4.7 Article

RNase HII Saves rnhA Mutant Escherichia coli from R-Loop-Associated Chromosomal Fragmentation

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 429, Issue 19, Pages 2873-2894

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2017.08.004

Keywords

R-loops; R-lesions; double-strand DNA. breaks; stable DNA replication; SOS response

Funding

  1. National Institutes of Health [GM 073115]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM073115] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The rnhAB mutant Escherichia coli, deficient in two RNase H enzymes that remove both R-loops and incorporated ribonucleotides (rNs) from DNA, grow slowly, suggesting accumulation of rN-containing DNA lesions (R-lesions). We report that the rnhAB mutants have reduced viability, form filaments with abnormal nucleoids, induce SOS, and fragment their chromosome, revealing replication and/or segregation stress. R-loops are known to interfere with replication forks, and sensitivity of the double rnhAB mutants to translation inhibition points to R-loops as precursors for R-lesions. However, the strict specificity of bacterial RNase HII for RNA DNA junctions indicates that R-lesions have rNs integrated into DNA. Indeed, instead of relieving problems of rnhAB mutants, transient inhibition of replication from oriC kills them, suggesting that oriC-initiated replication removes R-loops instead of compounding them to R-lesions. Yet, replication from an R-loop-initiating plasmid origin kills the double rnhAB mutant, revealing generation of R-lesions by R-loop-primed DNA synthesis. These R-lesions could be R-tracts, contiguous runs of 4 RNA nucleotides within DNA strand and the only common substrate between the two bacterial RNase H enzymes. However, a plasmid relaxation test failed to detect R-tracts in DNA of the rnhAB mutants, although it readily detected R-patches (runs of 1-3 rNs). Instead, we detected R-gaps, single-strand gaps containing rNs, in the chromosomal DNA of the rnhAB mutant. Therefore, we propose that RNase H-deficient mutants convert some R-loops into R-tracts, which progress into R-gaps and then to double-strand breaks explaining why R-tracts do not accumulate in RNase H-deficient cells, while double-strand breaks do. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available