4.1 Article

Molecular dynamics simulations of CH4 diffusion in kaolinite: influence of water content

Journal

Publisher

SPRINGERNATURE
DOI: 10.1007/s40789-019-00275-2

Keywords

Molecular dynamics; Kaolinite; Water content; Diffusion; Interaction energy

Funding

  1. National Natural Science Foundation of China [U1810102, 51974194]
  2. Key Laboratory of Coal Science and Technology of the Ministry of Education and Shanxi Province

Ask authors/readers for more resources

Understanding the interaction of CH4 with kaolinite is significant for researchers in the fields of coalbed CH4 and shale gas. The diffusion behaviors of CH4 in kaolinite with water contents ranging from 0 to 5 wt% have been analyzed by molecular dynamics simulations. The results of the simulations indicate that CH4 molecules can jump between adjacent holes in the kaolinite matrix. CH4 diffusion coefficient was very low (3.28x10(-9) m(2)/s) and increased linearly with the increasing of water content. As the water content decreased, the value of radial distribution function first peak between CH4 and oxygen was larger, meaning that with lower water content, the interaction energy between CH4 and oxygen in kaolinite is stronger. The interaction between CH4 and water is linearly positively correlated with water content, in contrast, the interaction energy between kaolinite and water as well as between kaolinite and CH4 decreased linearly with increasing water content. On the other hand, the diffusion of CH4 molecules adsorbed on the surfaces also can be accelerated by the fast diffusion of water molecules in the middle micropore of the kaolinite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available