4.6 Article

Magnetization-governed magnetoresistance anisotropy in the topological semimetal CeBi

Journal

PHYSICAL REVIEW B
Volume 100, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.100.180407

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering
  2. National Science Foundation [DMR-1901843]
  3. National Natural Science Foundation of China [61771235, 61727805]
  4. U.S. Department of Energy (DOE), Office of Science, Basic Energy Science (BES) [DE-SC0020148]
  5. U.S. Department of Energy (DOE) [DE-SC0020148] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Magnetic topological semimetals, the latest member of topological quantum materials, are attracting extensive attention as they may lead to topologically driven spintronics. Currently, magnetotransport investigations on these materials are focused on the anomalous Hall effect. Here, we report on the magnetoresistance anisotropy of topological semimetal CeBi, which has tunable magnetic structures arising from localized Ce 4f electrons and exhibits both negative and positive magnetoresistances, depending on the temperature. We found that the angle dependence of the negative magnetoresistance, regardless of its large variation with the magnitude of the magnetic field and with temperature, is solely dictated by the field-induced magnetization that is orientated along a primary crystalline axis and flops under the influence of a rotating magnetic field. The results reveal the strong interaction between conduction electrons and magnetization in CeBi. They also indicate that magnetoresistance anisotropy can be used to uncover the magnetic behavior and the correlation between transport phenomena and magnetism in magnetic topological semimetals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available