4.8 Article

Ferroelectric ternary content-addressable memory for one-shot learning

Journal

NATURE ELECTRONICS
Volume 2, Issue 11, Pages 521-529

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41928-019-0321-3

Keywords

-

Funding

  1. ASCENT, one of six centres in JUMP - DARPA
  2. Semiconductor Research Corporation (SRC)

Ask authors/readers for more resources

Deep neural networks are efficient at learning from large sets of labelled data, but struggle to adapt to previously unseen data. In pursuit of generalized artificial intelligence, one approach is to augment neural networks with an attentional memory so that they can draw on already learnt knowledge patterns and adapt to new but similar tasks. In current implementations of such memory augmented neural networks (MANNs), the content of a network's memory is typically transferred from the memory to the compute unit (a central processing unit or graphics processing unit) to calculate similarity or distance norms. The processing unit hardware incurs substantial energy and latency penalties associated with transferring the data from the memory and updating the data at random memory addresses. Here, we show that ternary content-addressable memories (TCAMs) can be used as attentional memories, in which the distance between a query vector and each stored entry is computed within the memory itself, thus avoiding data transfer. Our compact and energy-efficient TCAM cell is based on two ferroelectric field-effect transistors. We evaluate the performance of our ferroelectric TCAM array prototype for one- and few-shot learning applications. When compared with a MANN where cosine distance calculations are performed on a graphics processing unit, the ferroelectric TCAM approach provides a 60-fold reduction in energy and 2,700-fold reduction in latency for a single memory search operation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available