4.7 Article

Short fiber/polyurethane composite membrane for gas separation

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 543, Issue -, Pages 40-48

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2017.08.043

Keywords

Short glass wool fiber; Polyurethane; Composite; Membrane; Gas selectivity

Ask authors/readers for more resources

In this research, short fiber/polymer composite membranes is introduced for gas separation. Our attempt is to increase the membranes performance by using wide interface between fiber and polymer. Short glass wool fiber (SGWF) was used as a polar micro size reinforcement and was mechanically dispersed in polyurethane matrix. Scanning electron microscope (SEM) images showed that fibers have a good dispersion and adhesion to polymer matrix. In order to survey the phase separation and crystallization behavior of polyurethane segments, differential scanning calorimetery (DSC) and dynamic mechanical thermal analysis (DMTA) were used. The results indicated that polar surface of glass wool is a suitable site for attraction of hard segments. Thermal transition of soft segments were assisted using DMTA. Obtained results were showed that the presence of glass wool fiber remarkably reduced the soft segments glass transition temperature (T-g). Gas permeation properties of membranes were assisted using pure CO2, CH4 and N-2 gases. Presence of SGWF caused a simultaneous increase in permeability and ideal selectivity (permselectivity) in a way that composite membranes showed high performance. Thus, using of fiber instead of nanoparticles in polymeric membranes can be more beneficial in view of economic and performance for industrial applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available