3.8 Proceedings Paper

Self-Supervised Sparse-to-Dense: Self-Supervised Depth Completion from LiDAR and Monocular Camera

Publisher

IEEE
DOI: 10.1109/icra.2019.8793637

Keywords

-

Funding

  1. Office of Naval Research (ONR) [N00014-17-1-2670]
  2. NVIDIA Corporation

Ask authors/readers for more resources

Depth completion, the technique of estimating a dense depth image from sparse depth measurements, has a variety of applications in robotics and autonomous driving. However, depth completion faces 3 main challenges: the irregularly spaced pattern in the sparse depth input, the difficulty in handling multiple sensor modalities (when color images are available), as well as the lack of dense, pixel-level ground truth depth labels for training. In this work, we address all these challenges. Specifically, we develop a deep regression model to learn a direct mapping from sparse depth (and color images) input to dense depth prediction. We also propose a self-supervised training framework that requires only sequences of color and sparse depth images, without the need for dense depth labels. Our experiments demonstrate that the self-supervised framework outperforms a number of existing solutions trained with semi-dense annotations. Furthermore, when trained with semi-dense annotations, our network attains state-of-the-art accuracy and is the winning approach on the KITTI depth completion benchmark(1) at the time of submission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available