4.7 Article

Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 60, Issue 5, Pages 1876-1891

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jmedchem.6b01645

Keywords

-

Funding

  1. U.S. National Institutes of Health [R01GM103893]
  2. AbbVie
  3. Bayer Pharma AG
  4. Boehringer Ingelheim
  5. Canada Foundation for Innovation
  6. Eshelman Institute for Innovation
  7. Genome Canada
  8. Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant] [115766]
  9. Janssen
  10. Merck Co.
  11. Novartis Pharma AG
  12. Ontario Ministry of Economic Development and Innovation
  13. Pfizer
  14. Sao Paulo Research Foundation-FAPESP
  15. Takeda
  16. Wellcome Trust

Ask authors/readers for more resources

G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18 (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available