3.8 Proceedings Paper

Design and Characterization of a Novel Robotic Surface for Application to Compressed Physical Environments

Publisher

IEEE
DOI: 10.1109/icra.2019.8794043

Keywords

-

Ask authors/readers for more resources

Developments of robot arms are countless, but there has been little focus on robot surfaces for the reshaping of a habitable space-especially compliant surfaces. In this paper we introduce a novel, tendon-driven, robot surface comprised of aggregated, overlapping panels organized in a herringbone pattern. The individual 3D-printed panels and their behavior as an aggregation are inspired by the form and behavior of a pinecone. This paper presents our concept, design, and realization of this robot, and compares our prototype to simulations of four physical configurations that are formally distinct and suggestive of how the surface might be applied to habitable, physical space in response to human needs and wants. For the four configurations studied, we found a validating match between prototype and simulations. The paper concludes with a consideration of potential applications for robot surfaces like this one.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available