4.6 Article

Impact of Smart Inverters on Feeder Hosting Capacity of Distribution Networks

Journal

IEEE ACCESS
Volume 7, Issue -, Pages 163526-163536

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2952569

Keywords

Impact studies; renewable energy deployments; active distribution networks; advanced control; power system modeling; power system analysis

Funding

  1. Ministry of Economy, Trade, and Industry

Ask authors/readers for more resources

Penetration of renewable energy based distributed generators into power networks is limited. This is due to several reasons such as intermittency of the generation, low-inertia during disturbances and high variation of local voltage and frequency. Traditionally, distribution networks are designed for a finite voltage drop with distance from feeder connection. When PV panels are deployed at households, their impact on the local voltage profile becomes very substantial. Especially, when there is high solar radiation, generated power increases and the local voltage exceeds the permittable limits. Smart inverters are introduced to tackle this problem. Unlike other inverters, they can follow the local network measurements and provide auxiliary voltage and frequency support. With these features, smart inverters have the ability to push the renewable energy penetration level further. To investigate this phenomenon, custom smart inverter models are developed. Power flow calculation steps are modified to include smart inverter's active inputs. Then, feeder hosting capacity studies were run with conventional and smart inverters to investigate the improvement. Developed models, modified power flow algorithm and results of simulations are reported. Findings show renewable energy share can be increased in networks with smart inverter deployments only, without making substantial changes to rest of the network.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available