4.6 Article

Mechanical properties of lipid bilayers: a note on the Poisson ratio

Journal

SOFT MATTER
Volume 15, Issue 44, Pages 9085-9092

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9sm01290g

Keywords

-

Funding

  1. National Science Foundation [CHE 1764257]

Ask authors/readers for more resources

We investigate the Poisson ratio nu of fluid lipid bilayers, i.e., the question how area strains compare to the changes in membrane thickness (or, equivalently, volume) that accompany them. We first examine existing experimental results on the area- and volume compressibility of lipid membranes. Analyzing them within the framework of linear elasticity theory for homogeneous thin fluid sheets leads us to conclude that lipid membrane deformations are to a very good approximation volume-preserving, with a Poisson ratio that is likely about 3% smaller than the common soft matter limit . These results are fully consistent with atomistic simulations of a DOPC membrane at varying amount of applied lateral stress, for which we instead deduce nu by directly comparing area- and volume strains. To assess the problematic assumption of transverse homogeneity, we also define a depth-resolved Poisson ratio nu(z) and determine it through a refined analysis of the same set of simulations. We find that throughout the membrane's thickness, nu(z) is close to the value derived assuming homogeneity, with only minor variations of borderline statistical significance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available