4.8 Article

Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II

Journal

CHEMICAL SCIENCE
Volume 10, Issue 45, Pages 10503-10509

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9sc03501j

Keywords

-

Funding

  1. Air Force Office of Scientific Research [FA9550-14-1-0005]
  2. Packard Foundation [2013-39272]

Ask authors/readers for more resources

The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (<100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll a (BChla) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available