4.6 Article

Selective design of binder-free hierarchical nickel molybdenum sulfide as a novel battery-type material for hybrid supercapacitors

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 7, Issue 44, Pages 25467-25480

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta08527k

Keywords

-

Funding

  1. Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future [2015M3D1A1069710]
  2. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2014R1A6A1030419]

Ask authors/readers for more resources

Recently, binder-free and hierarchical electrode materials have attracted special attention for the rational design of high-energy density hybrid supercapacitors. Herein, we demonstrated binder-free nickel molybdenum sulfide nano-flakes on nickel foam (NMS-Ni) using a facile successive ionic layer adsorption and reaction (SILAR) process for the fabrication of high-performance hybrid supercapacitors. The selective SILAR cycles had a significant effect on the morphology and electrochemical properties of the NMS nanostructures. Specifically, the NMS deposited for 40 cycles (40cyc@NMS-Ni) displayed the maximum areal capacity (C-Ac) of 2.8 C cm(-2) (2224 C g(-1)) at the current density 4 mA cm(-2) in a 6 M KOH electrolyte. Furthermore, a hybrid supercapacitor (HSC) was fabricated using 40cyc@NMS-Ni as the positive electrode and N,O-enriched activated carbon (N,O-AC)-coated Ni-foam as the negative electrode, which showed the maximum potential and specific capacitance (CF-cell) of 1.5 V and 111 F g(-1), respectively. Moreover, the device displayed an outstanding specific energy and specific power of 35 W h kg(-1) and 1.5 kW kg(-1) with an excellent capacitance retention (95%) after 5000 cycles, respectively. Thus, based on the observed results, it can be concluded that the present study demonstrates a route to utilize NMS-based electrodes as a promising material for high-performance energy storage devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available