4.1 Article

Development of a Landslide Early Warning System in Indonesia

Journal

GEOSCIENCES
Volume 9, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/geosciences9100451

Keywords

landslides; early warning system; precipitation forecasts; rainfall threshold; slope stability model

Funding

  1. Balai Litbang Sabo research project - Ministry of Public Works and Housing, Indonesia

Ask authors/readers for more resources

Landslides are one of the most disastrous natural hazards in Indonesia, in terms of number of fatalities and economic losses. Therefore, Balai Litbang Sabo (BLS) has developed a Landslide Early Warning System (LEWS) for Indonesia, based on a Delft-FEWS (Flood Early Warning System) platform. This system utilizes daily precipitation data, a rainfall threshold method, and a Transient Rainfall Infiltration and Grid-based Regional Slope-stability model (TRIGRS) to predict landslide occurrences. For precipitation data, we use a combination of 1-day and 3-day cumulative observed and forecasted precipitation data, obtained from the Tropical Rainfall Measuring Mission (TRMM) and the Indonesian Meteorological Climatological and Geophysical Agency (BMKG). The TRIGRS model is used to simulate the slope stability in regions that are predicted to have a high probability of landslide occurrence. Our results show that the landslides, which occurred in Pacitan (28 November 2017) and Brebes regions (22 February 2018), could be detected by the LEWS from one to three days in advance. The TRIGRS model supports the warning signals issued by the LEWS, with a simulated factor of safety values lower than 1 in these locations. The ability of the Indonesian LEWS to detect landslide occurrences in Pacitan and Brebes indicates that the LEWS shows good potential to detect landslide occurrences a few days in advance. However, this system is still undergoing further developments for better landslide prediction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available