4.5 Article

Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting

Journal

FRONTIERS IN ENERGY RESEARCH
Volume 7, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fenrg.2019.00119

Keywords

floating microbial fuel cells; wastewaters monitoring; low-energy remote data transmission; in-field MFC tests; anossic wastewater; long term field operation

Categories

Funding

  1. Bill & Melinda Gates Foundation [OPP1094890]
  2. EPSRC, UK [EP/L002132/1]
  3. Research Fund for the Italian Electrical System

Ask authors/readers for more resources

In the present work different prototypes of floating MFCs have been tested in anoxic water environments of wastewater plants in Italy, over a period of 3 years. Several configurations of horizontal (flat) and vertical (tubular) MFCs were assembled, using low-cost and light-weight materials, such as plastic lunch boxes, polystyrene or wood to keep the systems afloat, and ceramics for the MFCs. Untreated carbon cloth or veil was used for both anode and cathode electrodes. Felt (flat MFCs) or clay (tubular MFCs) was used as the cation-exchange separator. Single flat MFCs generated power up to 12 mW/m(2) while a 32 cylindrical MFC stack generated up to 18 mW/m(2). The testing lasted for more than 2 years and there was no inoculation other than exposing the MFCs to the denitrification environment. The cathodes of the flat MFCs were spontaneously colonized by algae and plants, and this did not affect the stability of the systems. Natural light increased the power output of the flat MFCs which were smaller than 50 x 50 cm. Diurnal oscillation of temperature and periodic water flow did not significantly affect the performance of the MFCs. The largest flat MFC produced the highest absolute power, although in a disrupted way. A new, simple low-energy remote monitoring system, based on LoRa technology was used for data transmission over distances of >500 m. This is a piece of hardware that could potentially be suitable for remote monitoring as part of a network, as it can be directly powered by the deployed MFCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available