4.7 Article

Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics

Journal

HYDROLOGY AND EARTH SYSTEM SCIENCES
Volume 23, Issue 11, Pages 4803-4824

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-23-4803-2019

Keywords

-

Funding

  1. National Foundation Research [NRF-2016R1D1A1B04931844]
  2. Professional Development Research University (PDRU) of Universiti Teknologi Malaysia [Q.J130000.21A2.04E10]
  3. Turkish Scientific and Technical Research Council (TUBITAK) [118C020]

Ask authors/readers for more resources

The climate modelling community has trialled a large number of metrics for evaluating the temporal performance of general circulation models (GCMs), while very little attention has been given to the assessment of their spatial performance, which is equally important. This study evaluated the performance of 36 Coupled Model Intercomparison Project 5 (CMIP5) GCMs in relation to their skills in simulating mean annual, monsoon, winter, pre-monsoon, and post-monsoon precipitation and maximum and minimum temperature over Pakistan using state-of-the-art spatial metrics, SPAtial EFficiency, fractions skill score, Goodman-Kruskal's lambda, Cramer's V, Mapcurves, and Kling-Gupta efficiency, for the period 1961-2005. The multi-model ensemble (MME) precipitation and maximum and minimum temperature data were generated through the intelligent merging of simulated precipitation and maximum and minimum temperature of selected GCMs employing random forest (RF) regression and simple mean (SM) techniques. The results indicated some differences in the ranks of GCMs for different spatial metrics. The overall ranks indicated NorESM1-M, MIROC5, BCC-CSM1-1, and ACCESS1-3 as the best GCMs in simulating the spatial patterns of mean annual, monsoon, winter, pre-monsoon, and post-monsoon precipitation and maximum and minimum temperature over Pakistan. MME precipitation and maximum and minimum temperature generated based on the best-performing GCMs showed more similarities with observed precipitation and maximum and minimum temperature compared to precipitation and maximum and minimum temperature simulated by individual GCMs. The MMEs developed using RF displayed better performance than the MMEs based on SM. Multiple spatial metrics have been used for the first time for selecting GCMs based on their capability to mimic the spatial patterns of annual and seasonal precipitation and maximum and minimum temperature. The approach proposed in the present study can be extended to any number of GCMs and climate variables and applicable to any region for the suitable selection of an ensemble of GCMs to reduce uncertainties in climate projections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available