4.7 Article

Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network

Journal

HYDROLOGY AND EARTH SYSTEM SCIENCES
Volume 23, Issue 12, Pages 5199-5225

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-23-5199-2019

Keywords

-

Ask authors/readers for more resources

Although most field and modeling studies of river corridorexchange have been conducted at scales ranging from tens to hundreds of meters,results of these studies are used to predict their ecological andhydrological influences at the scale of river networks. Further complicatingprediction, exchanges are expected to vary with hydrologic forcing and thelocal geomorphic setting. While we desire predictive power, we lack acomplete spatiotemporal relationship relating discharge to the variation ingeologic setting and hydrologic forcing that is expected across a riverbasin. Indeed, the conceptual model of Wondzell (2011) predicts systematicvariation in river corridor exchange as a function of (1) variation inbaseflow over time at a fixed location, (2) variation in discharge withlocation in the river network, and (3) local geomorphic setting. To testthis conceptual model we conducted more than 60 solute tracer studiesincluding a synoptic campaign in the 5th-order river network of the H. J. Andrews Experimental Forest (Oregon, USA) and replicate-in-time experimentsin four watersheds. We interpret the data using a series of metricsdescribing river corridor exchange and solute transport, testing forconsistent direction and magnitude of relationships relating these metricsto discharge and local geomorphic setting. We confirmed systematic decreasein river corridor exchange space through the river networks, from headwatersto the larger main stem. However, we did not find systematic variation withchanges in discharge through time or with local geomorphic setting. Whileinterpretation of our results is complicated by problems with the analyticalmethods, the results are sufficiently robust for us to conclude that space-for-timeand time-for-space substitutions are not appropriate in our study system.Finally, we suggest two strategies that will improve the interpretability oftracer test results and help the hyporheic community develop robust datasets that will enable comparisons across multiple sites and/or dischargeconditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available