4.6 Article

Biomimetic design of elastomeric vitrimers with unparalleled mechanical properties, improved creep resistance and retained malleability by metal-ligand coordination

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 7, Issue 47, Pages 26867-26876

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta10909a

Keywords

-

Funding

  1. China National Funds for Distinguished Young Scientists [51825303]
  2. National Natural Science Foundation of China [51790503, 51703064, 51673065]
  3. Pearl River S&T Nova Program of Guangzhou [201806010153]
  4. Fundamental Research Funds for the Central Universities [D2190610]

Ask authors/readers for more resources

Vitrimers can undergo network reshuffling via exchange reactions, endowing the covalently crosslinked polymers with malleability and reprocessability. Elastomeric vitrimers usually suffer from poor mechanical properties and undergo undesired creep at service temperature. Thus far, the incorporation of fillers and introduction of static cross-links are feasible solutions to improve mechanical properties and creep resistance, which, however, inevitably hampers network arrangement and deteriorates the dynamic properties. Herein, we demonstrate a rational design of elastomeric vitrimers with an integration of unparalleled mechanical properties, improved creep resistance and retained malleability by engineering Zn2+-imidazole complexes into the network. Specifically, commercially available styrene-butadiene rubber (SBR) grafted with 2-(2-benzimidazolyl)ethanethiol is covalently crosslinked with the dithiol-containing boronic ester cross-linker through thiol-ene click chemistry reaction. Afterwards, Zn2+-imidazole complexes are introduced and lead to the formation of a micro-phase separated structure. Zn2+-imidazole complexes can function as sacrificial units through reversible breaking and reforming events, leading to significant enhancements on the modulus, strength and toughness while maintaining the extensibility of the networks. In addition, the creep resistance at service temperature is improved as the Zn2+-imidazole complexes can act as cross-links to restrict segment mobility, whereas, the network arrangement at elevated temperatures is not affected due to the dissociation of Zn2+-imidazole complexes, allowing the networks to be reshaped and recycled.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available