4.6 Article

A new insight into PAM/graphene-based adsorption of water-soluble aromatic pollutants

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 52, Issue 14, Pages 8650-8664

Publisher

SPRINGER
DOI: 10.1007/s10853-017-1090-x

Keywords

-

Funding

  1. special funding project of the technical innovation of Foshan city [2014AG10009]
  2. self-innovation promotion project of the universities in Guangdong province [2015KQNCX178]
  3. research center project of engineering technology of Foshan City [2014GA000355]

Ask authors/readers for more resources

Graphene materials have been extensively verified as a good adsorbent for tackling wastewater containing various aromatic pollutants; however, little attention has been paid to understanding the graphene-based adsorption mechanism. Here, a systematic work is performed to prepare a series of graphene oxide (GO)-incorporated polyacrylamide hydrogels, with a three-dimensional (3D) monolithic structure, followed by in situ conversion of GO to reduced graphene oxide. Such a method not only enables the prevention of irreversible aggregation of graphene sheets during the in situ reduction, but also facilitates the clarification of the relationship between the structure and adsorption properties of the graphene materials. This work presents two kinds of graphene-based 3D monolithic adsorbents for either selective separation of the cationic aromatic pollutant from anionic one or uptake both of them for the total purification purpose. More importantly, we effectively unravel that the sp(2)-conjugated carbon network of the graphene materials plays a pivotal role in purifying the aromatic organic pollutants through pi-pi stacking interactions that outstrip electrostatic attraction interactions. Therefore, the present work is expected to provide an impetus toward exploration of high-performance graphene-based materials for various applications, especially environmental remediation, on the basis of effectively impeding self-aggregation of graphene sheets and judiciously modulating their intrinsic structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available