3.8 Article

VISCOSITY AND ELECTRICAL RESISTIVITY OF LIQUID CuNiAl, CuNiAlCo, CuNiAlCoFe ALLOYS OF EQUIATOMIC COMPOSITIONS

Journal

ACTA METALLURGICA SLOVACA
Volume 25, Issue 4, Pages 259-266

Publisher

SCICELL SRO
DOI: 10.12776/ams.v25i4.1358

Keywords

multi-principal element alloys (MPEAs); complex concentrated alloys (CCAs); high-entropy alloys (HEAs); melts; microheterogeneity; viscosity; resistivity

Funding

  1. Act 211 Government Russian Federation [02.A03.21.0006]

Ask authors/readers for more resources

The kinematic viscosity and electrical resistivity of equiatomic liquid alloys CuNiAl, CuNiAlCo, CuNiAlCoFe has measured during heating of the sample to 2070 K and subsequent cooling. We consider CuNiAl, CuNiAlCo, CuNiAlCoFe alloys of equiatomic compositions as the multiprincipal element alloys (MPEAs), the complex concentrated alloys (CCAs), the high-entropy alloys (HEAs). The measuring results of the vickosity and the resistivity are discussed on base the available microgeterogenity concept. We searched the temperature T*of the heating a melt for destroy of microheterogeneity. T* is the temperature of the beginning of the matching portion of the temperature dependence of the viscosity and resistivity which is obtained by heating and cooling. All the investigated melts demonstrated different temperature dependence of viscosity for heating and cooling. The temperature T*=1800 K were determined only for liquid alloy CuNiAl of equiatomic composition. For alloys CuNiAlCo, CuNiAlCoFe the coinciding part of the temperature dependences of the viscosity which are obtained by heating and cooling is absent. The results of viscosity are discussed within the theory of absolute reaction rates. Entropy of activation of viscous flow and free activation energy of viscous flow were determined by analyzing the temperature dependences of kinematic viscosity. The increasing of components quantity in the alloy leads to the increasing of the free activation energy of viscous flow and the volume per structural unit of the melt (ion, atom, or cluster). The measuring results of resistivity were interpreted using the Nagel-Tauc model. The temperature coefficient of resistivity (characteristic of the structural state of the melt) was determined. The temperature dependences of the CuNiAl liquid alloy resistivity measured upon heating to 2070 K and subsequent cooling do not coincide.The value of T* temperature for alloy CuNiAl of equiatomic composition is 1850 K. For CuNiAlCo, CuNiAlCoFe alloys the temperature dependences of the resistivity which are obtained by heating and cooling are coinciding. This means that destroy of microheterogeneity for melts after heating up to 2070K did not occur. The temperature coefficient of resistivity of the CuNiA liquid alloy irreversibly decreases when it heated to a temperature of 1850 K.This is evidence of the destruction of microheterogeneity with the formation of a homogeneous solution at the atomic level. The increasing of components quantity in the alloy leads to a decreasing of the temperature coefficient of the resistivity (in cooling moda). According to the ideas of Nagel and Tauk, an irreversible decrease of the temperature coefficient of the specific resistance of the melt indicates an increase in the volume per structural unit of the melt (ion, atom, or cluster)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available