4.6 Article

Contaminant Cation Effect on Oxygen Transport through the Ionomers of Polymer Electrolyte Membrane Fuel Cells

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 166, Issue 16, Pages F1337-F1343

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0671916jes

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-EE0007271]

Ask authors/readers for more resources

We characterized the effects of cobalt (Co2+) and other cation contaminants on the oxygen (O-2) transport properties of the PFSA ionomer used in polymer electrolyte membrane fuel cells (PEMFCs) and gained insight into the mechanisms by which contaminant cations inhibit O-2 transport. Such cations can be released by alloy catalysts and environmental conditions and pose a significant challenge to maintaining high current density performance with low platinum (Pt) loadings. We used a test cell capable of isolating the ionomer from the membrane electrode assembly (MEA), allowing for O-2 transport resistance (RO2) measurements using a limiting current technique. We contaminated ionomer membranes with Li+, Na+, Ni2+, Co2+, and Ce3+ and found a general increase in RO2 for increased contamination levels and decreased water activity. In addition, our Co2+ results indicated distinct concentrationdependent regimes. The other cation-form ionomers allowed us to separate the impacts of ion pair strength, multivalency, and reduced water uptake. We believe that these factors cause a more compressed hydrophilic domain and tortuous O-2 diffusion path, and a commensurate increase in RO2. Finally, we studied the impact of Co2+ on an operating PEMFC and found an increase in RO2 consistent with the results of our isolated membrane tests. (C) 2019 The Electrochemical Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available