3.8 Proceedings Paper

Soft computing-based techniques for concrete beams shear strength

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.prostr.2019.08.123

Keywords

concrete beam shear strength; artificial neural networks; heuristic algorithms; stirrups; soft computing techniques

Ask authors/readers for more resources

Despite the abundance of research works, both experimental and theoretical, conducted since the middle of the previous century up to today, the determination of the shear stress value is still remains an open issue of great interest in structural engineering. The need for further research is indicated by the fact that the majority of available proposals, whether proposed by regulatory agencies or various individuals researchers, lead to the estimation of different shear stress values; moreover, the comparison of estimated values with experimental values demonstrates that the available proposals lead to an overestimation or to an underestimation of the true shear stress. In this research study, the artificial neural networks approach is used to estimate the ultimate shear capacity of reinforced concrete beams with transverse reinforcement. More specifically, artificial neural network models have been examined for predicting the shear capacity of concrete beams, based on experimental test results available in the pertinent literature. The comparison of the consequent results with the corresponding experimental ones as well as with available formulas from previous research studies or code provisions makes obvious the ability of artificial neural networks to evaluate the shear capacity of reinforced concrete beams in a trustworthy and effective manner Furthermore, the preliminary results presented in this work reveal the crucial parameters that affect the value of the shear strength of reinforced concrete beams with or without transverse reinforcement. (C) 2019 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available