3.8 Article

Predicting and Designing Epitope Ensemble Vaccines against HTLV-1

Journal

JOURNAL OF INTEGRATIVE BIOINFORMATICS
Volume 16, Issue 4, Pages -

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/jib-2018-0051

Keywords

Human T-lymphotropic virus 1; HTLV-1; Vaccine design; envelope glycoprotein GP62

Ask authors/readers for more resources

The infection mechanism and pathogenicity of Human T-lymphotropic virus 1 (HTLV-1) are ambiguously known for hundreds of years. Our knowledge about this virus is recently emerging. The purpose of the study is to design a vaccine targeting the envelope glycoprotein, GP62, an outer membrane protein of HTLV-1 that has an increased number of epitope binding sites. Data collection, clustering and multiple sequence alignment of HTLV-1 glycoprotein B, variability analysis of envelope Glycoprotein GP62 of HTLV-1, population protection coverage, HLA-epitope binding prediction, and B-cell epitope prediction were performed to predict an effective vaccine. Among all the predicted peptides, ALQTGITLV and VPSSSTPL epitopes interact with three MHC alleles. The summative population protection coverage worldwide by these epitopes as vaccine candidates was found nearly 70%. The docking analysis revealed that ALQTGITLV and VPSSSTPL epitopes interact strongly with the epitope-binding groove of HLA-A*02:03, and HLA-B*35:01, respectively, as this HLA molecule was found common with which every predicted epitope interacts. Molecular dynamics simulations of the docked complexes show they form stable complexes. So, these potential epitopes might pave the way for vaccine development against HTLV-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available