4.3 Article

miR-124 Contributes to the functional maturity of microglia

Journal

DEVELOPMENTAL NEUROBIOLOGY
Volume 76, Issue 5, Pages 507-518

Publisher

WILEY
DOI: 10.1002/dneu.22328

Keywords

microglia; miRNA; development; phagocytosis; chemotaxis

Funding

  1. Australian Research Council [ARC DP150104472]
  2. National Health and Medical Research Council [NHMRC APP1010713]

Ask authors/readers for more resources

During early development of the central nervous system (CNS), a subset of yolk-sac derived myeloid cells populate the brain and provide the seed for the microglial cell population, which will self-renew throughout life. As development progresses, individual microglial cells transition from a phagocytic amoeboid state through a transitional morphing phase into the sessile, ramified, and normally nonphagocytic microglia observed in the adult CNS under healthy conditions. The molecular drivers of this tissue-specific maturation profile are not known. However, a survey of tissue resident macrophages identified miR-124 to be expressed in microglia. In this study, we used transgenic zebrafish to overexpress miR-124 in the mpeg1 expressing yolk-sac-derived myeloid cells that seed the microglia. In addition, a systemic sponge designed to neutralize the effects of miR-124 was used to assess microglial development in a miR-124 loss-of-function environment. Following the induction of miR-124 overexpression, microglial motility and phagocytosis of apoptotic cells were significantly reduced. miR-124 overexpression in microglia resulted in the accumulation of residual apoptotic cell bodies in the optic tectum, which could not be achieved by miR-124 overexpression in differentiated neurons. Conversely, expression of the miR-124 sponge caused an increase in the motility of microglia and transiently rescued motility and phagocytosis functions when activated simultaneously with miR-124 overexpression. This study provides in vivo evidence that miR-124 activity has a key role in the development of functionally mature microglia. (c) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available