4.7 Review

What are the evolutionary origins of stomatal responses to abscisic acid in land plants?

Journal

JOURNAL OF INTEGRATIVE PLANT BIOLOGY
Volume 59, Issue 4, Pages 240-260

Publisher

WILEY
DOI: 10.1111/jipb.12523

Keywords

-

Funding

  1. Australian Research Council [DE140100946, DP140100666]
  2. Australian Research Council [DE140100946] Funding Source: Australian Research Council

Ask authors/readers for more resources

The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA-mediated control of stomatal aperture, when these structures first appeared, prior to the divergence of bryophyte and vascular plant lineages. In contrast, a gradualistic model for stomatal control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available