4.5 Review

Physical structure and mechanical properties of knitted hernia mesh materials: A review

Journal

JOURNAL OF INDUSTRIAL TEXTILES
Volume 48, Issue 1, Pages 333-360

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1528083717690613

Keywords

Hernia mesh; knitted structure; physical properties; mechanical properties; mesh composition

Ask authors/readers for more resources

Mesh implantation for hernia repair is one of the common surgical techniques. The goal of this review is to highlight the basic requirements of mesh in order to select the most appropriate hernia mesh considering mesh type, physical properties and mechanical properties. Textile warp-knitted synthetic meshes have significantly decreased recurrence rate of hernia. Polypropylene light weight mesh with antimicrobial coating is taking attention of researchers due to its improved compliance, infection resistance, hydrophobicity, inert nature and strong material. Composite meshes have better tissue incorporation, reduced shrinkage and improved mechanical properties. The mesh porosity is an important factor to predict the biocompatibility of all meshes. Usually, large pore size meshes are better than small pore size meshes because of their flexibility, decreased shrinkage, reduced scar bridging and increased tissue ingrowth. All synthetic and composite meshes have higher strength than the human abdominal wall. Mesh type, mesh structure, mechanical properties and mesh implantation techniques are important factors for hernia repair. It is critical to understand the physical structure and mechanical properties of mesh material in relation to human abdominal wall. Moreover, mesh surface functionalization and grafting with plasma is a new development technique to enhance the loading of antimicrobial agent for the prevention of mesh infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available