4.6 Article

Global Life Cycle Paper Flows, Recycling Metrics, and Material Efficiency

Journal

JOURNAL OF INDUSTRIAL ECOLOGY
Volume 22, Issue 4, Pages 686-693

Publisher

WILEY
DOI: 10.1111/jiec.12613

Keywords

industrial ecology; material efficiency; material flow analysis (MFA); paper recycling; pulp and paper industry; Sankey diagram

Ask authors/readers for more resources

Despite major improvements in recycling over the last decades, the pulp and paper sector is a significant contributor to global greenhouse gas emissions and other environmental pressures. Further reduction of virgin material requirements and environmental impacts requires a detailed understanding of the global material flows in paper production and consumption. This study constructs a Sankey diagram of global material flows in the paper life cycle, from primary inputs to end-of-life waste treatment, based on a review of publicly available data. It then analyzes potential improvements in material flows and discusses recycling and material efficiency metrics. The article argues that the use of the collection rate as a recycling metric does not directly stimulate avoidance of virgin inputs and associated impacts. An alternative metric compares paper for recycling (recovered paper) with total fibrous inputs and indicates that the current rate is at just over half of the technical potential. Material efficiency metrics are found to be more useful if they relate to the reuse potential of wastes. The material balance developed in this research provides a solid basis for further study of global sustainable production and consumption of paper. The conclusions on recycling and efficiency should be considered for improving environmental assessment and stimulating a shift toward resource efficiency and the circular economy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available