4.6 Article

Regulation of the Cell Cycle and Inflammatory Arthritis by the Transcription Cofactor LBH Gene

Journal

JOURNAL OF IMMUNOLOGY
Volume 199, Issue 7, Pages 2316-2322

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1700719

Keywords

-

Categories

Funding

  1. Rheumatology Research Foundation (Disease Targeted Research), National Institutes of Health (National Institute of Arthritis and Musculoskeletal and Skin Diseases) [R01AR065466]
  2. National Institutes of Health [R01 GM113256]

Ask authors/readers for more resources

Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) display unique aggressive behavior, invading the articular cartilage and promoting inflammation. Using an integrative analysis of RA risk alleles, the transcriptome and methylome in RA FLS, we recently identified the limb bud and heart development (LBH) gene as a key dysregulated gene in RA and other autoimmune diseases. Although some evidence suggests that LBH could modulate the cell cycle, the precise mechanism is unknown and its impact on inflammation in vivo has not been defined. Our cell cycle analysis studies show that LBH deficiency in FLS leads to S-phase arrest and failure to progress through the cell cycle. LBH-deficient FLS had increased DNA damage and reduced expression of the catalytic subunit of DNA polymerase a. Decreased DNA polymerase a was followed by checkpoint arrest due to phosphorylation of checkpoint kinase 1. Because DNA fragments can increase arthritis severity in preclinical models, we then explored the effect of LBH deficiency in the K/BxN serum transfer model. Lbh knockout exacerbated disease severity, which is associated with elevated levels of IL-1 beta and checkpoint kinase 1 phosphorylation. These studies indicate that LBH deficiency induces S-phase arrest that, in turn, exacerbates inflammation. Because LBH gene variants are associated with type I diabetes mellitus, systemic lupus erythematosus, RA, and celiac disease, these results suggest a general mechanism that could contribute to immune-mediated diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available