4.1 Article

Effect of nano-confinement on the structure and properties of water clusters: An ab initio study

Journal

JOURNAL OF CHEMICAL SCIENCES
Volume 132, Issue 1, Pages -

Publisher

INDIAN ACAD SCIENCES
DOI: 10.1007/s12039-019-1697-3

Keywords

Nanoconfinement; Water clusters; Carbon nanotubes; Density functional theory

Funding

  1. Indian Academy of Sciences

Ask authors/readers for more resources

An ab initio investigation on water clusters confined to armchair carbon nanotubes (CNT) with varying diameters has been performed using the density functional theory-based calculations. Different parameters have been investigated including structure, hydrogen bonding pattern and vibrational spectra of water-CNT complexes. Our results reveal that one-dimensional water chain parallel to CNT axis is formed in narrow nanotubes CNT(4,4) and CNT(5,5), whereas in CNT(6,6), zigzag structure is observed. An increase in the CNT diameter results in more symmetric structures similar to the gas phase. The vibrational analysis shows a redshift in stretching frequency of the hydrogen bond assisted O-H in CNT(6,6) due to the reduction in O-O separation whereas a significant blue shift in stretching frequency mode is observed in highly confined CNT(4,4) and CNT(5,5). It implies that the hydrogen bond strength between water molecules is strongest in CNT(6,6). It is also observed that water cluster tends to be near CNT wall due to H center dot center dot center dot pi interaction between water molecule and the p-electron cloud of CNT. An inverse relation between the electronic charge transfer (from CNT to water) and the diameter is also established. This study demonstrates that the degree of confinement is extremely important in deciding the properties of confined water molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available