4.1 Article

Thiocyanate Degradation by a Highly Enriched Culture of the Neutrophilic Halophile Thiohalobacter sp. Strain FOKN1 from Activated Sludge and Genomic Insights into Thiocyanate Metabolism

Journal

MICROBES AND ENVIRONMENTS
Volume 34, Issue 4, Pages 402-412

Publisher

JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE
DOI: 10.1264/jsme2.ME19068

Keywords

Thiohalobacter sp. strain FOKN1; thiocyanate degradation; neutrophilic halophile; whole genome sequence and proteome; thiocyanate dehydrogenase

Funding

  1. JSPS KAKENHI [17K15305]
  2. Nippon Steel & Sumitomo Metal Corporation
  3. Grants-in-Aid for Scientific Research [17K15305] Funding Source: KAKEN

Ask authors/readers for more resources

Thiocyanate (SCN-) is harmful to a wide range of organisms, and its removal is essential for environmental protection. A neutrophilic halophile capable of thiocyanate degradation, Thiohalobacter sp. strain FOKN1, was highly enriched (relative abundance; 98.4%) from activated sludge collected from a bioreactor receiving thiocyanate-rich wastewater. The enrichment culture degraded 3.38 mM thiocyanate within 140 h, with maximum activity at pH 8.8, 37 degrees C, and 0.18 M sodium chloride. Thiocyanate degradation was inhibited by 30 mg L-1 phenol, but not by thiosulfate. Microbial thiocyanate degradation is catalyzed by thiocyanate dehydrogenase, while limited information is currently available on the molecular mechanisms underlying thiocyanate degradation by the thiocyanate dehydrogenase of neutrophilic halophiles. Therefore, (meta)genomic and proteomic analyses of enrichment cultures were performed to elucidate the whole genome sequence and proteome of Thiohalobacter sp. strain FOKN1. The 3.23-Mb circular Thiohalobacter sp. strain FOKN1 genome was elucidated using a PacBio RSII sequencer, and the expression of 914 proteins was identified by tandem mass spectrometry. The Thiohalobacter sp. strain FOKN1 genome had a gene encoding thiocyanate dehydrogenase, which was abundant in the proteome, suggesting that thiocyanate is degraded by thiocyanate dehydrogenase to sulfur and cyanate. The sulfur formed may be oxidized to sulfate by the sequential oxidation reactions of dissimilatory sulfite reductasc, adenosine-5'-phosphosulfate reductase, and dissimilatory ATP sulfurylasc. Although the Thiohalobacter sp. strain FOKN1 genome carried a gene encoding cyanate lyase, its protein expression was not detectable. The present study advances the understanding of the molecular mechanisms underlying thiocyanate degradation by the thiocyanate dehydrogenase of neutrophilic halophiles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available