4.5 Article

Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics

Journal

JOURNAL OF HYDROMETEOROLOGY
Volume 18, Issue 12, Pages 3217-3237

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JHM-D-17-0130.1

Keywords

-

Funding

  1. NASA SMAP mission

Ask authors/readers for more resources

The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with similar to 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O - F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of similar to 0.37 K for the O - F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O - F residuals (under similar to 3 K), the soil moisture increments (under similar to 0.01 m(3) m(-3)), and the surface soil temperature increments (under similar to 1 K). Typical instantaneous values are similar to 6 K for O - F residuals, similar to 0.01 (similar to 0.003) m(3) m(-3) for surface (root zone) soil moisture increments, and similar to 0.6 K for surface soil temperature increments. The O - F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O - F autocorrelations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available