4.4 Article

Spatiotemporal Analysis of Zebrafish hox Gene Regulation by Cdx4

Journal

DEVELOPMENTAL DYNAMICS
Volume 244, Issue 12, Pages 1564-1573

Publisher

WILEY-BLACKWELL
DOI: 10.1002/DVDY.24343

Keywords

temporal collinearity; spatial collinearity; axial patterning

Funding

  1. University of Miami, College of Arts and Sciences
  2. University of Miami, Neuroscience Program
  3. NSF [IOS-090449]

Ask authors/readers for more resources

Background: Cdx factors expressed in caudal regions of vertebrate embryos regulate hox patterning gene transcription. While loss of Cdx function is known to shift hox spatial expression domains posteriorly, the mechanism underlying the shift is not understood. We addressed this problem by analyzing the spatiotemporal expression profile of all 49 zebrafish hox genes in wild-type and Cdx4-deficient embryos. Results: Loss of Cdx4 had distinct effects on hox spatial expression in a paralogous group-dependent manner: in the head, group 4 expression was expanded posteriorly; in the trunk, group 5-10 expression was shifted posteriorly; and in the tail, group 11-13 genes were expressed in the tail bud but not in more differentiated tissues. In the trunk neural tissue, loss of Cdx4 severely delayed both transcriptional activation of hox genes during the initiation phase, and the anterior-ward expansion of hox expression domains during the establishment phase. In contrast, in the trunk mesoderm, loss of Cdx4 only delayed the hox initiation phase. Conclusions: These results indicate that Cdx4 differentially regulates the transcription of head, trunk and tail hox genes. In the trunk, Cdx4 conveys spatial positional information to axial tissues primarily by regulating the time of hox gene transcriptional activation during the initiation phase. Developmental Dynamics 244:1564-1573, 2015. (C) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available