4.7 Article

Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China

Journal

JOURNAL OF HYDROLOGY
Volume 547, Issue -, Pages 428-442

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2017.02.020

Keywords

Urban inundation; SWMM; LISFLOOD-FP; Coupled hydrodynamic model; Scenario analysis; Dongguan City

Funding

  1. Natural Science Foundation of China [51579105, 51210013, 51209095]
  2. Water Resource Science and Technology Innovation Program of Guangdong Province
  3. Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund
  4. consulting research program of Chinese Academy of Engineering [2015-ZD-07-04-03]

Ask authors/readers for more resources

One major threat to cities at present is the increased inundation hazards owing to changes in climate and accelerated human activity. Future evolution of urban inundation is still an unsolved issue, given large uncertainties in future environmental conditions within urbanized areas. Developing model techniques and urban inundation projections are essential for inundation management. In this paper, we proposed a 2D hydrodynamic inundation model by coupling SWMM and LISFLOOD-FP models, and revealed how future urban inundation would evolve for different storms, sea level rise and subsidence scenarios based on the developed model. The Shiqiao Creek District (SCD) in Dongguan City was used as the case study. The model ability was validated against the June 13th, 2008 inundation event, which occurred in SCD, and proved capable of simulating dynamic urban inundation. Scenario analyses revealed a high degree of consistency in the inundation patterns among different storms, with larger magnitudes corresponding to greater return periods. Inundations across SCD generally vary as a function of storm intensity, but for lowlands or regions without drainage facilities inundations tend to aggravate over time. In riverfronts, inundations would exacerbate with sea level rise or subsidence; however, the inland inundations are seemingly insensitive to both factors. For the combined scenario of 100-yr storm, 0.5 m subsidence and 0.7 m sea level rise, the riverside inundations would occur much in advance, whilst catastrophic inundations sweep across SCD. Furthermore, the optimal low-impact development found for this case study includes 0.2 km(2) of permeable pavements, 0.1 km(2) of rain barrels and 0.7 km(2) of green roofs. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available