4.5 Article

Predicting scour depth at seawalls using GP and ANNs

Journal

JOURNAL OF HYDROINFORMATICS
Volume 19, Issue 3, Pages 349-363

Publisher

IWA PUBLISHING
DOI: 10.2166/hydro.2017.125

Keywords

artificial neural networks (ANNs); breaking wave; broken wave; genetic programming (GP); scour depth; seawalls

Ask authors/readers for more resources

Accurate prediction of maximum scour depth is important for the optimum design of seawall structure. Owing to the complex interaction of the incident waves, sediment bed, and seawalls, the prediction of the scour depth is not an easy task to accomplish. Undermining the recent experimental and numerical advancement, the available empirical equations have limited accuracy and applicability. The aim of this study is to investigate the application of robust data-mining methods including genetic programming (GP) and artificial neural networks (ANNs) for predicting the maximum scour depth at seawalls under the broken and breaking waves action. The performance of GP and ANNs models has been compared with the existing empirical formulas employing statistical measures. The results indicated that both the GP and ANNs models functioned significantly better than the existing empirical formulas. Furthermore, the capability of GP was used to produce meaningful mathematical rules, and an analytical formula for predicting the maximum scour depth at seawalls under breaking and broken waves' attacks was developed by utilizing GP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available