4.4 Article Proceedings Paper

Computational Fluid Dynamics Modeling of Flow Boiling in Microchannels With Nonuniform Heat Flux

Journal

Publisher

ASME
DOI: 10.1115/1.4037343

Keywords

-

Funding

  1. DARPA IceCool Fundamentals program
  2. CONACYT [382817]

Ask authors/readers for more resources

The computational fluid dynamics (CFD) modeling of boiling phenomena has remained a challenge due to numerical limitations for accurately simulating the two-phase flow and phase-change processes. In the present investigation, a CFD approach for such analysis is described using a three-dimensional (3D) volume of fluid (VOF) model coupled with a phase-change model accounting for the interfacial mass and energy transfer. This type of modeling allows the transient analysis of flow boiling mechanisms, while providing the ability to visualize in detail temperature, phase, and pressure distributions for microscale applications with affordable computational resources. Results for a plain microchannel are validated against benchmark correlations for heat transfer (HT) coefficients and pressure drop as a function of the heat flux and mass flux. Furthermore, the model is used for the assessment of two-phase cooling in microelectronics under a realistic scenario with nonuniform heat fluxes at localized regions of a silicon microchannel, relevant to the cooling layer of 3D integrated circuit (IC) architectures. Results indicate the strong effect of two-phase flow regime evolution and vapor accumulation on HT. The effects of reduced saturation pressure, subcooling, and flow arrangement are explored in order to provide insight about the underlying physics and cooling performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available