3.8 Proceedings Paper

A data-driven framework for uncertainty quantification of a fluidized bed

Publisher

IEEE

Keywords

uncertainty quantification; fluidized beds; data-driven\ framework; machine learning; Discrete Element Method

Funding

  1. US Department of Energy (DOE) National Energy Technology Laboratory (NETL) [DE-FE_0026220]
  2. National Science Foundation's XSEDE [ACI-1053575]

Ask authors/readers for more resources

We carried out a nondeterministic analysis of flow in a fluidized bed. The flow in the fluidized bed is simulated with National Energy Technology Laboratory's open-source multiphase fluid dynamics suite MFiX. It does not possess tools for uncertainty quantification. Therefore, we developed a C++ wrapper to integrate an uncertainty quantification toolkit developed at Sandia National Laboratory with MFiX. The wrapper exchanges uncertain input parameters and key output parameters among Dakota and MFiX. However, a data-driven framework is also developed to obtain reliable statistics as it is not feasible to get them with MFiX integrated into Dakota, Dakota-MFiX. The data generated from Dakota-MFiX simulations, with the Latin Hypercube method of sampling size 500, is used to train a machine-learning algorithm. The trained and tested deep neural network algorithm is integrated with Dakota via the wrapper to obtain low order statistics of the bed height and pressure drop across the bed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available