4.7 Article

Catalytic polymer-clay composite for enhanced removal and degradation of diazinon

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 335, Issue -, Pages 135-142

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.04.017

Keywords

Diazinon; Organophosphate; Polymer-clay composite; Filtration

Funding

  1. Israeli Ministry of Agriculture and Rural Development

Ask authors/readers for more resources

It is well established that organophosphate pesticides, such as diazinon, pose environmental and health risks. Diazinon is prone to rapid acidic hydrolysis, forming the less toxic compound 2-isopropyl-6-methyl-4-pyrimidinol (IMP). In this study, diazinon surface catalyzed hydrolysis was achieved by its adsorption to a composite, based on protonated poly (4-vinyl-pyridine-co-styrene) (HPVPcoS) and montmorillonite (MMT) clay. The adsorption affinity and kinetics of diazinon to HPVPcoS-MMT were significantly higher than those obtained to the deprotonated PVPcoS-MMT, emphasizing the importance of hydrogen bonding. Correspondingly, diazinon filtration by HPVPcoS-MMT columns was highly efficient (100% for 100 pore volumes), while filtration by columns of PVPcoS-MMT or granular activated carbon (GAC) reached only 55% and 85%, respectively. Regeneration of HPVPcoS-MMT by pH increase was demonstrated and sorbent reuse was successful, whereas regeneration and reuse of GAC and PVPcoS-MMT were inefficient. Proton transfer from HPVPcos-MMT to diazinon, investigated by FTIR analysis, supports the suggested mechanism of surface catalyzed hydrolysis. These findings demonstrate the applicability of such bi-functional sorbents, to adsorb and degrade pollutants, for efficient water treatment. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available