4.7 Article

Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 329, Issue -, Pages 92-101

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.01.032

Keywords

CoP; Peroxymonosulfate; Catalytic activity; Mechanism

Funding

  1. National Natural Science Foundation of China [51478224]
  2. priority academic program development of Jiangsu higher education institutions

Ask authors/readers for more resources

A new catalyst system of CoP/peroxymonosulfate (PMS) is presented, which achieved significant improvement in catalytic activity. Nanostructured CoP, obtained by a simple solid-state reaction, exhibited dramatic catalytic activity with 97.2% degradation of orange II of 100 ppm within 4 min. Moreover, the high efficiency could be reached for other phenolic pollutants, i.e., phenol and 4-chlorophenol. The reaction rate is much higher than the most reported catalysts. Effect of parameters on catalytic activity of the catalyst was studied in detail. Notably, initial pH of the solution had a slight negative effect on the catalytic performance over the pH range 4.07-10.92, suggesting that CoP has the great adaptability of pH. CoP/PMS demonstrated excellent anti-interference performance toward anions (Cl-, NO3-, and HCO3-). In addition, the pathway of degradation of orange II is proposed by analyzing its intermediates. Based on the XPS spectra of CoP, the identification of the reactive species ((OH)-O-center dot and SO4 center dot-) by electron paramagnetic resonance (EPR) analysis and quenching tests, a possible mechanism for activation of PMS by CoP was proposed. Considering the dramatic catalytic activity, a wide range of pH catalyst suited, CoP is believed to provide robust support for the promising industrial application of AOPs. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available