4.7 Article

Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 325, Issue -, Pages 279-287

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2016.12.006

Keywords

Arsenic; P. vittata; Rhizosphere; Soil enzymes; Illumina sequencing

Funding

  1. Ministry of Science and Technology- Taiwan [MOST 103-2116-M-006-010]

Ask authors/readers for more resources

Phytoremediation of arsenic (As)-contaminated soil by hyperaccumulator Pteris vittata is promising. A better understanding of the rhizosphere microbial dynamics that regulate As availability and plant growth is important to optimize the phytoremediation process. In this study, Illumina sequencing of 16S rRNA genes was applied to assess the rhizosphere microbial community structure of P. vittata. Microbial functionality was monitored by soil enzyme activities and MPN-PCR targeting genes of interest. Arsenic (100 mg kg(-1) AsV) addition to soil significantly increased DOC, root exudates, As and P uptake and the frond biomass of P. vittata. Moreover, As-enrichment significantly increased soil enzyme activities involved in N, P and S cycling and the gene abundance Of As transforming bacteria, Fe- and S-reducing bacteria and N and C fixing bacteria in the rhizosphere of P. vittata. Together, the results revealed that the combined selective pressure of As and rhizosphere resulted in stimulation of microbial community, which most likely has a role in reductive dissolution of Fe and S, As and P mobilization, C degradation and fixation, and N fixation. These changes appeared to have a role in mitigation of As toxicity and to promote growth and the As uptake ability of P. vittata under As-enriched conditions. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available