4.7 Article

Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 321, Issue -, Pages 256-267

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2016.08.061

Keywords

Thermal-mechanical-chemical; Mesoscopic; PBX; Crystal plasticity; Reactive model

Funding

  1. Chinese National Nature Science Foundation [11572045, 11472051]
  2. Defense Industrial Technology Development Program [B1520132004]
  3. Safety ammunition research and Development Center [RMC2015B03]

Ask authors/readers for more resources

A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100 m/s to 600 m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (>= 300 m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available