4.7 Article

Determination of the optimized single-layer ionospheric height for electron content measurements over China

Journal

JOURNAL OF GEODESY
Volume 92, Issue 2, Pages 169-183

Publisher

SPRINGER
DOI: 10.1007/s00190-017-1054-6

Keywords

Global navigation satellite system (GNSS); Ionospheric total electron content (TEC); Mapping function; Single-layer model (SLM); Global ionospheric map (GIM); Ionosphere effective height (IEH)

Funding

  1. National Key Research Program of China Collaborative Precision Positioning Project [2016YFB0501900]
  2. China Natural Science Funds [41231064, 41674022, 41604031, 41574015]

Ask authors/readers for more resources

The ionosphere effective height (IEH) is a very important parameter in total electron content (TEC) measurements under the widely used single-layer model assumption. To overcome the requirement of a large amount of simultaneous vertical and slant ionospheric observations or dense coinciding pierce points data, a new approach comparing the converted vertical TEC (VTEC) value using mapping function based on a given IEH with the ground truth VTEC value provided by the combined International GNSS Service Global Ionospheric Maps is proposed for the determination of the optimal IEH. The optimal IEH in the Chinese region is determined using three different methods based on GNSS data. Based on the ionosonde data from three different locations in China, the altitude variation of the peak electron density (hmF2) is found to have clear diurnal, seasonal and latitudinal dependences, and the diurnal variation of hmF2 varies from approximately 210 to 520 km in Hainan. The determination of the optimal IEH employing the inverse method suggested by Birch et al. (Radio Sci 37, 2002. doi: 10.1029/2000rs002601)) did not yield a consistent altitude in the Chinese region. Tests of the method minimizing the mapping function errors suggested by Nava et al. (Adv Space Res 39:1292-1297, 2007) indicate that the optimal IEH ranges from 400 to 600 km, and the height of 450 km is the most frequent IEH at both high and low solar activities. It is also confirmed that the IEH of 450-550 km is preferred for the Chinese region instead of the commonly adopted 350-450 km using the determination method of the optimal IEH proposed in this paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available