4.4 Article

Qualitative proteomic analysis of Tipula oleracea nudivirus occlusion bodies

Journal

JOURNAL OF GENERAL VIROLOGY
Volume 98, Issue 2, Pages 284-295

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/jgv.0.000661

Keywords

nudivirus; proteome

Funding

  1. European Research Council starting grant GENOVIR [205206]
  2. European Regional Development Fund (ERDF)
  3. Conseil Regional du Centre
  4. French National Institute for Agricultural Research (INRA)
  5. French National Institute of Health and Medical Research (Inserm)

Ask authors/readers for more resources

Nudiviruses are arthropod-specific large double-stranded circular DNA viruses, related to baculoviruses, which replicate in the nucleus of the cells they infect. To date, six fully sequenced nudiviral genomes are available in databases, and the protein profile from nudivirus particles was mainly characterized by PAGE. However, only a few direct matches have been completed between genomic and proteomic data, with the exception of the major occlusion body protein from Penaeus monodon nudivirus and four nucleocapsid proteins from Helicoverpa zea nudivirus-2. The function of predicted nudiviral proteins is still inferred from what is known from baculoviruses or endogenous nudiviruses (i.e. bracoviruses). Tipula oleracea nudivirus (ToNV) is the causative agent of crane fly nucleopolyhedrosis. Along with Penaeus monodon nudivirus, ToNV is the second fully sequenced nudivirus to be described as forming occlusion bodies. The protein profile revealed by Coomassie-stained SDS-PAGE is very similar to those observed for other nudiviruses, with five major protein bands of about 75, 48, 35, 25 and 12 kDa. Proteomic analysis, using on-line nanoflow liquid chromatography in tandem with high-resolution mass spectrometry, revealed that ToNV occlusion bodies are composed of 52 viral proteins, the most abundant of which are the functional homologue of baculovirus polyhedrin/granulin and the homologues of three Helicoverpa zea nudivirus-2 predicted proteins: the two virion structural proteins 34K (Hz2V052, the baculovirus capsid protein VP39 homologue) and 11K (Hz2V025), and the hypothetical protein Hz2V079, a newly identified nudivirus core gene product.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available