3.8 Proceedings Paper

On the Capacity of Private Nonlinear Computation for Replicated Databases

Journal

2019 IEEE INFORMATION THEORY WORKSHOP (ITW)
Volume -, Issue -, Pages 120-124

Publisher

IEEE
DOI: 10.1109/itw44776.2019.8989267

Keywords

-

Funding

  1. US NSF [CNS-1526547]

Ask authors/readers for more resources

We consider the problem of private computation (PC) in a distributed storage system. In such a setting a user wishes to compute a function of f messages replicated across n noncolluding databases, while revealing no information about the desired function to the databases. We provide an information-theoretically accurate achievable PC rate, which is the ratio of the smallest desired amount of information and the total amount of downloaded information, for the scenario of nonlinear computation. For a large message size the rate equals the PC capacity, i.e., the maximum achievable PC rate, when the candidate functions are the f independent messages and one arbitrary nonlinear function of these. When the number of messages grows, the PC rate approaches an outer bound on the PC capacity. As a special case, we consider private monomial computation (PMC) and numerically compare the achievable PMC rate to the outer bound for a finite number of messages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available