3.8 Proceedings Paper

CARAFE: Content-Aware ReAssembly of FEatures

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/ICCV.2019.00310

Keywords

-

Funding

  1. Collaborative Research Grant from SenseTime Group (CUHK) [TS1610626, TS1712093]
  2. General Research Fund (GRF) of Hong Kong [14236516, 14203518]
  3. Singapore MOE AcRF Tier 1 [M4012082.020]
  4. NTU SUG
  5. NTU NAP

Ask authors/readers for more resources

Feature upsampling is a key operation in a number of modern convolutional network architectures, e.g. feature pyramids. Its design is critical for dense prediction tasks such as object detection and semantic/instance segmentation. In this work, we propose Content-Aware ReAssembly of FEatures (CARAFE), a universal, lightweight and highly effective operator to fulfill this goal. CARAFE has several appealing properties: (1) Large field of view. Unlike previous works (e.g. bilinear interpolation) that only exploit subpixel neighborhood, CARAFE can aggregate contextual information within a large receptive field. (2) Content-aware handling. Instead of using a fixed kernel for all samples (e.g. deconvolution), CARAFE enables instance-specific content-aware handling, which generates adaptive kernels on-the-fly. (3) Lightweight and fast to compute. CARAFE introduces little computational overhead and can be readily integrated into modern network architectures. We conduct comprehensive evaluations on standard benchmarks in object detection, instance/semantic segmentation and in-painting. CARAFE shows consistent and substantial gains across all the tasks (1.2% AP, 1.3% AP, 1.8% mIoU, 1.1dB respectively) with negligible computational overhead. It has great potential to serve as a strong building block for future research. Code and models are available at https://github.com/open-mmlab/mmdetection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available