4.3 Article

Experimental and numerical simulation studies on heat transfer to calorimeters engulfed in diesel pool fires

Journal

JOURNAL OF FIRE SCIENCES
Volume 35, Issue 2, Pages 156-176

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0734904117694047

Keywords

Adiabatic surface temperature; pool fire; calorimeter; fire dynamics simulator

Ask authors/readers for more resources

Characterization of heat transfer to calorimeters engulfed in pool fires is extremely important. To estimate the heat flux to the calorimeters, experiments are performed with horizontal stainless steel 304L pipes engulfed in diesel pool fires. The concept of adiabatic surface temperature is applied to predict the incident heat flux to horizontally oriented calorimeters engulfed in diesel pool fires. Plate thermometers are used to measure the adiabatic surface temperature for diesel pool fires. The estimated subsurface temperatures inside the steel pipes using the adiabatic surface temperature concept and the measured temperatures are in good agreement. Adiabatic surface temperature is also computed from fire simulations. The incident heat fluxes to the steel pipes engulfed in fire predicted from the simulations are found to be in good agreement with the experiments. The fire numerical code is validated against the 1 m pool fire experimental results of centerline temperature distribution and irradiances away from fire. A correlation is provided for the estimation of adiabatic surface temperature for large diesel pool fires. These results would provide an effective way for thermal test simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available