4.3 Article

Low temperature synthesis of multiwalled carbon nanotubes and incorporation into an organic solar cell

Journal

JOURNAL OF EXPERIMENTAL NANOSCIENCE
Volume 12, Issue 1, Pages 363-383

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17458080.2017.1357842

Keywords

Carbon nanotubes; low temperature synthesis; non-equilibrium plasma; chemical vapour deposition; organic solar cells

Funding

  1. National Research Foundation of South Africa

Ask authors/readers for more resources

Metal nanoparticle (MNP) catalysts used for the synthesis of multiwalled carbon nanotubes (MWCNTs) consisted of single metals (Fe, Ni or Co) and bimetallic mixture (CoFe, NiFe or NiCo). MWCNTs were successfully synthesised at 200 degrees C in 10 min using liquefied petroleum gas as carbon source with non-equilibrium plasma enhanced chemical vapour deposition (PECVD) method. The nanostructures and the morphology of the MNPs and the MWCNTs film were characterised using relevant microscopic and spectroscopic methods. The synthesised MWCNTs were used as part of the electrode material in organic solar cell (OSC) set-up. Poly (3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) was used as an electron transporter and poly-3-hexyl thiophene (P3HT) as an electron donor. The performance of OSC devices was tested using standard electrical measurements and solar simulator operating at 100 mW/cm(2). The measured power conversion efficiencies was found to be dependent on the metal catalyst used during synthesis. Among all the catalysts employed in this investigation, the best device performance was found from the synthesis of MWCNTs using Fe as a catalyst followed by Co and then Ni, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available