4.7 Article

Crystal structures of β-carboxysome shell protein CcmP: ligand binding correlates with the closed or open central pore

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 68, Issue 14, Pages 3857-3867

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erx070

Keywords

BMC domain; carboxysome; beta-cyanobacteria; gated transport; microcompartment; shell protein

Categories

Funding

  1. Swedish Research Council
  2. Knut and Alice Wallenberg Foundation
  3. Rontgen-Angstrom Cluster

Ask authors/readers for more resources

Cyanobacterial CO2 fixation is promoted by encapsulating and co-localizing the CO2-fixing enzymes within a protein shell, the carboxysome. A key feature of the carboxysome is its ability to control selectively the flux of metabolites in and out of the shell. The beta-carboxysome shell protein CcmP has been shown to form a double layer of pseudohexamers with a relatively large central pore (similar to 13 angstrom diameter), which may allow passage of larger metabolites such as the substrate for CO2 fixation, ribulose 1,5-bisphosphate, through the shell. Here we describe two crystal structures, at 1.45 angstrom and 1.65 angstrom resolution, of CcmP from Synechococcus elongatus PCC7942 (SeCcmP). The central pore of CcmP is open or closed at its ends, depending on the conformation of two conserved residues, Glu69 and Arg70. The presence of glycerol resulted in a pore that is open at one end and closed at the opposite end. When glycerol was omitted, both ends of the barrel became closed. A binding pocket at the interior of the barrel featured residual density with distinct differences in size and shape depending on the conformation, open or closed, of the central pore of SeCcmP, suggestive of a metabolite-driven mechanism for the gating of the pore.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available