4.7 Review

How do plants sense their nitrogen status?

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 68, Issue 10, Pages 2531-2539

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erx013

Keywords

Amino acids; GCN2; glutamate receptors; nitrate uptake; PII; root development; signal transduction; target of rifampicin

Categories

Funding

  1. UK Biotechnology and Biological Sciences Research Council (BBSRC)
  2. Biotechnology and Biological Sciences Research Council [1368640] Funding Source: researchfish

Ask authors/readers for more resources

The primary processes that contribute to the efficient capture of soil nitrate are the development of a root system that effectively explores the soil and the expression of high-affinity nitrate uptake systems in those roots. Both these processes are highly regulated to take into account the availability and distribution of external nitrate pools and the endogenous N status of the plant. While significant progress has been made in elucidating the early steps in sensing and responding to external nitrate, there is much less clarity about how the plant monitors its N status. This review specifically addresses the questions of what N compounds are sensed and in which part of the plant, as well as the identity of the signalling pathways responsible for their detection. Candidates that are considered for the role of N sensory systems include the target of rapamycin (TOR) signalling pathway, the general control non-derepressible 2 (GCN2) pathway, the plastidic PII-dependent pathway, and the family of glutamate-like receptors (GLRs). However, despite significant recent progress in elucidating the function and mode of action of these signalling systems, there is still much uncertainty about the extent to which they contribute to the process by which plants monitor their N status. The possibility is discussed that the large GLR family of Ca2+ channels, which are gated by a wide range of different amino acids and expressed throughout the plant, could act as amino acid sensors upstream of a Ca2+-regulated signalling pathway, such as the TOR pathway, to regulate the plant's response to changes in N status.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available