3.8 Proceedings Paper

Biocompatibility and surface properties of hydrogenated amorphous silicon-germanium thin films prepared by LF-PECVD

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1757-899X/628/1/012003

Keywords

-

Funding

  1. CONACYT [48757]
  2. PRODEP [511-6/18-9245-UV-PTC883]

Ask authors/readers for more resources

We studied the surface morphology and biocompatibility of hydrogenated amorphous silicon-germanium (a-Si1-xGex:H) thin films prepared by Low Frequency Plasma Enhanced Chemical Vapor Deposition (LF-PECVD). These films were deposited on a Corning 2947 glass substrate having a thickness of 3 mu m, the electrical performance showed a decreased electrical resistance for low regime voltage. The root mean square (RMS) surface roughness of the films was measured by atomic force microscopy (AFM) in a non-contact mode. A biocompatibility tests was carried out using primary cultures of dorsal root ganglion (DRG) of Wistar rats. The DRG neurons were incubated for 18 hours on a-Si1-xGex:H thin films, and subsequent electrophysiological recording was performed. These neurons displayed typical ionic currents, including a fast-inward current at the beginning of voltage clamp pulse (Na+ current) and ensuing outward currents (K+ current). In current clamp experiments, depolarizing current pulse injection caused typical action potential discharge of the neurons. These results confirmed the feasibility of using a-Si1-xGex:H thin films as a biocompatible material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available