3.8 Proceedings Paper

A Scalable Random Access Micro-traps Array for Formation, Selective Retrieval and Capturing of Individual Droplets

Publisher

IEEE
DOI: 10.1109/embc.2019.8857768

Keywords

-

Funding

  1. Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute
  2. Center for Cancer Research

Ask authors/readers for more resources

Formation, selective retrieval and capturing of individual droplets are key operational capabilities needed for a broad range of droplet microfluidic applications. The membrane displacement trap (MDT) element gives a robust method for uniform discretization and controllable manipulation of aqueous droplets using an enclosed micro-well covered by an elastomer membrane. This capability can be scaled up by combining the modular elements with a system design that requires a minimal number of signal inputs. Incorporation of MDT elements with a pneumatically-controllable multiplexer system can lead to a scalable random access MDT array platform for liquid discretization and selective manipulation. Herein, we report the design and development of a programmable droplet microfluidic platform for liquid sampling and selectively handling up to 32 individual droplets using 10 pneumatic signal inputs. The multiplexer system can logarithmically scale up capacity of the MDT array platform, making it possible to manipulate hundreds droplets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available