3.8 Proceedings Paper

Deep Learning with Convolutional Neural Network for detecting microsleep states from EEG: A comparison between the oversampling technique and cost-based learning

Publisher

IEEE
DOI: 10.1109/embc.2019.8857588

Keywords

-

Funding

  1. University of Otago
  2. New Zealand Brain Research Institute

Ask authors/readers for more resources

Any occupation which involves critical decision making in real-time requires attention and concentration. When repetitive and expanded working periods are encountered, it can result in microsleeps. Microsleeps are complete lapses in which a subject involuntarily stops responding to the task that they are currently performing due to temporary interruptions in visual-motor and cognitive coordination. Microsleeps can last up to 15 s while performing a particular task. In this study, the ability of a convolutional neural network (CNN) to detect microsleep states from 16-channel EEG data from 8 subjects, performing a 1D visuomotor was explored. The data were highly imbalanced. When averaged across 8 subjects there were 17 responsive states for every microsleep state. Two approaches were used to handle the CNN training with data imbalance - oversampling the minority class and cost-based learning. The EEG was analysed using a 4-s epoch with a step size of 0.25 s. Leave-one-subject-out cross-validation was used to evaluate the performance. The performance measures used for assessing the detection capability of the CNN were: sensitivity, precision, phi, geometric mean (GM), AUC(ROC), and AUC(PR). The performance measures obtained using the oversampling and cost-based learning methods were: AUC(ROC) = 0.90/0.90, AUC(PR) = 0.41/0.41 and a phi = 0.42/0.40, respectively. Although the performances were similar, the cost-based learning method had a considerably shorter training time than the oversampling method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available